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Abstract: A new data-driven iterative learning control methodology is presented which uses the frequency response data of a
system in order to avoid the problem of unmodelled dynamics associated with low-order parametric models. A convex
optimisation problem is formulated to design the learning filters such that the convergence criterion is minimised. Since the
frequency response data of the system is used in obtaining these filters, robustness is ensured by eliminating the uncertainty in
the modelling process. The effectiveness of the method is illustrated by considering a case study where the proposed design
scheme is applied to a power converter control system for a specific accelerator requirement at CERN.

1 Introduction
The increasing performance demands of today's modern systems
have created challenging tasks for the control systems engineer. To
simplify the controller design process, these systems are
approximated with low-order models (which reduces the effort
required to properly synthesise a controller). This approximation,
however, can lead to stability and performance problems since
these low-order models are subject to model uncertainty. Data-
driven methods are used as a solution to this problem where
controllers are synthesised simply by using time-domain or
frequency-domain data. A survey on the differences associated
with model-based control and data-driven control has been
addressed in [1, 2]. For linear time-invariant systems, the
parametric uncertainties and the unmodelled dynamics associated
with the data-driven scheme are irrelevant, and the only source of
uncertainty is the measurement process. In addition to the problem
of unmodeled dynamics is the issue of tracking in high
performance systems. With general feedback control, a controller
can be designed to achieve sufficient robustness to system
uncertainties. However, feedback control suffers from a lag in
transient tracking since the controller has to react to inputs and
disturbances.

The classical model-reference adaptive control [3] may be
considered as the first data-driven attempt to solve the model
reference problem in an online manner. The Iterative-Feedback-
Tuning (IFT) method [4] has also gained interest in the scientific
community where the main goal is to obtain unbiased gradient
estimates and optimise for time-domain performance. In this
method, a non-convex optimisation problem is solved where
multiple experiments are performed to obtain the controller
parameters. In general, stability is not guaranteed with this method.
Some works which devised robust stability conditions for the IFT
method are asserted in [5, 6], and recent applications of robust IFT
controller design methods have been addressed in [7, 8]. Virtual
reference feedback tuning (VRFT) [9] is another offline one-shot
method which minimises the (filtered) ℋ2 norm of the difference
between a desired reference model and the achieved closed-loop
system. In this method, a controller is computed based on the
measured plant input when fed by a ‘virtual’ error. Recent
developments and extensions using the VRFT technique for single-
input–single-output (SISO) systems [10, 11] and multiple-input–
multiple-output systems [12, 13] have also been studied. More
recently, a frequency-domain data-driven approach in minimising
the ℋ∞ norm of weighted sensitivity functions has been proposed
in [14, 15]. In this method, a convex approximation of the ℋ∞

criterion is formulated where it is shown that the global solution to
the ℋ∞ problem is obtained as the controller order increases
(while guaranteeing the stability of the closed-loop system). This
method has been extended in [16] in order to obtain a local solution
for the ℋ∞ data-driven problem for fixed-structure low-order
controllers. This method, however, requires the solution to a non-
convex problem. Thus the authors in [17] proposed an iterative
method for obtaining a local solution for fixed-structure controllers
(in a data-driven setting) by solving a set of consecutive convex
problems; this method can consider both ℋ∞ and ℋ2 problems.

Although the data-driven methodology alleviates the problem of
unmodelled dynamics, feedback controllers can still produce
inadequate tracking performance for high bandwidth applications.
Iterative learning control (ILC) (which was first proposed in [18])
seeks to address the tracking problem by implementing a learning
algorithm where the desired performance is achieved by
incorporating past error information into the control structure. The
control signal (or reference signal in the case of closed-loop
control) is modified to attain a desired specification; in this paper,
systems that perform the same operations (i.e. repetitive tracking
specifications) under the same operating conditions are considered.
ILC designs have been constructed in a frequency-domain data-
driven framework in several works. In [19], a two-step approach is
proposed for using the frequency response of a system to satisfy
the ILC stability and convergence criterion. In this method, the
Nyquist plot of the plant is used where the learning filter and Q-
filter are tuned such that the stability bound is satisfied. The
authors in [20] proposed a manual loop-shaping method using an
approximation of the plant model using frequency-domain data.
Several works have realised ℋ∞ methods for optimising the ILC
convergence rate (given a desired performance specification). The
authors in [21] implement a model-matching problem to find the
ILC learning function for a given performance filter (i.e. the Q-
filter). Here, the model-matching problem was expressed as a
linear fractional transformation (where standard ℋ∞ tools were
used to solve the problem). The authors in [22] presented a robust
ILC scheme for uncertain systems using the Youla parameterisation
and the μ-synthesis approach. In [23], the bounded real lemma was
employed to achieve ℋ∞ performance in an ILC framework for
iteration-varying loads. All of these methods based on the ℋ∞
approach, however, require a plant model for proper controller
synthesis. In [24], a frequency-domain approach was developed to
maximise a weighted cost function which attempts to minimise the
ILC convergence criterion; this method, however, solves a non-
convex problem and does not guarantee the stability of the learning
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filters; stability of the filters can only be verified a-posteriori.
Another frequency-domain approach was used in [25] to minimise
the ℋ∞ norm of the ILC performance criterion (where no model is
required and can ensure the performance for systems with multi-
model uncertainties); this method, however, is limited to linearly
parameterised learning functions and does not guarantee the
stability of the learning filter. A more recent approach to data-
driven ILC was taken in [26] where the authors implement a tensor
decomposition method in the time-domain to obtain norm-optimal
results with respect to the errors caused by external disturbances;
Lautenschlager et al. [26], however, do not address the problem of
minimising the ILC convergence rate while guaranteeing the
stability of the ILC algorithm.

In this work, a new data-driven framework is presented for
optimising the learning filters in the ILC algorithm. The error
convergence rate depends on the learning filter (which should
ideally invert the plant dynamics); thus a method is proposed to
design the ILC learning filter such that it would approximate the
plant inverse without having the plant model (i.e. directly by means
of the frequency response of the system). By using the frequency
response measurement data to design the learning filter, the model
uncertainties are irrelevant (since all of the dynamics are captured
in the measurement). This is a distinctive advantage compared to
alternative robust ILC frameworks as measurement uncertainty can
be made smaller than the ones typically related to unmodelled
dynamics. A two-step method for attaining optimal closed-loop
performance in a data-driven setting will be presented. In the first
step, the frequency response of a plant is acquired (through an
experiment) in order to capture all of the system dynamics and
design a one-degree-of-freedom controller. In the second step, a
novel approach is formulated to optimise the ILC convergence rate
in the ℋ∞ sense (while guaranteeing the stability of the ILC
structure). A convex optimisation problem is proposed in order to
obtain a (rational) stable learning function and simultaneously
optimise the ILC convergence rate whilst eliminating the problem
of unmodelled dynamics that unavoidably affect the modelling
process; the advantage of this method is that optimal performance
and stability can be obtained with much less conservatism with
respect to model-based approaches. Some of the ideas presented in
[14] are used in formulating the necessary and sufficient conditions
for satisfying the convergence criterion. The methods presented in
this work are implemented for a specific high performance power
converter application at CERN. Currently, the load (i.e. a particle
accelerator magnet) is often approximated as a simple first-order
system (series RL circuit) even though it has been shown in [27]
that both the real and imaginary parts of its impedance are
frequency dependent (where its behaviour is also affected by the
vacuum chamber of the magnet, which makes the series RL even
less accurate). Therefore, it is appropriate to consider a data-driven
based design for the power converter control system.

The paper is organised as follows. The main results from
previous works regarding data-driven controller design (with ℋ∞
performance) and ILC formulation in a closed-loop structure are
recalled in Section 2. The main methodological results and
theoretical bases are addressed in Section 3 where some necessary
and sufficient conditions are derived for satisfying the ILC
convergence criteria. With these conditions, a convex optimisation
problem is then formulated in order to optimise the learning
functions (for a given Q-filter) in a data-driven context. A

simulation example is studied in Section 4 which considers the
design of a learning filter given a set of uncertain non-minimum
phase systems. Section 5 is dedicated to a case study concerning a
power converter control system for a specific accelerator
requirement at CERN. Finally, the concluding remarks are given in
Section 6.

2 Preliminaries
In order to avoid the risk of any confusion, the notation employed
in this paper will now be defined. Let the set RH∞ represent the
family of all stable, proper, real-rational transfer functions with
bounded infinity norms. Given a real-valued signal x(k) with a time
index k, the symbol q will denote the forward time-shift operator
such that qx(k) ≡ x(k + 1). The (one-sided) z-transformation of a
signal x(k) is X(z) = ∑k = 0

∞ x(k)z−k, and can be obtained by
substituting the shift operator q with z; the frequency response of a
system in the z-domain is obtained by setting z = e jω for
ω ∈ [ − π, π]. Finally, ℜ{ ⋅ } will represent the real part of the
argument.

2.1 Design of controller K with ℋ∞ performance

In this subsection, a method for designing a feedback controller in
a data-driven setting is recalled. This controller is designed to
achieve ℋ∞ performance and will be used for stabilising the
closed-loop system while simultaneously ensuring sufficient
robustness to uncertainties with adequate disturbance rejection. In
the next subsection, the ILC methodology is discussed for ensuring
the proper tracking performance (using a closed-loop structure)
[Note that to implement the proposed ILC strategy, the only
requirement is that the closed-loop system is stable. A data-driven
controller design methodology for obtaining a stabilising controller
is used in order to emphasise the data-driven framework of the
paper.].

Suppose that the plant of a SISO linear time-invariant system is
represented as G(z) = N(z)M−1(z) such that {N(z), M(z)} ∈ RH∞
are called the coprime factors of G(z) over RH∞ [28]. The
frequency response function (FRF) of such a system is given by the
following equation:

G(e jω) = N(e jω)M−1(e jω), ω ∈ Ω (1)

where Ω ≜ [ − π, π]. Note that for stable systems, we assume
M(e jω) = 1 and so N(e jω) is available by spectral analysis from a
set of data. For unstable systems, the frequency response of the
coprime factors can be identified from a closed-loop experiment
with a stabilising controller [14]. In this case, N(e jω) is the FRF
between the reference signal and the measured output, while
M(e jω) is the FRF between the reference signal and the plant input.
Given these definitions, it is evident that N(e jω)M−1(e jω) represents
the frequency response of the plant model. In general, a set G can
be formulated to represent a plant model containing p FRF models

G = {Gi(e jω); i = 1, …, p; ∀ω ∈ Ω} . (2)

For simplicity, one model from the set G will be considered, and
the subscript i will be omitted. However, in general, the design
procedures outlined in this paper can be applied to the multi-model
case.

Fig. 1 shows the control structure that will be used in this paper. 
The ILC structure will be discussed in the next section; the
remaining portions of this subsection will consider the design of
the controller K such that closed-loop stability and ℋ∞
performance is achieved (in a data-driven setting). The closed-loop
controller can be structured as K(z) = Kn(z)Kd

−1(z), where
Kn(z), Kd(z) ∈ RH∞. The functions Kn(z) and Kd(z) each represent
linearly parameterised polynomials in the z-domain, i.e.

Kn(z, ρ) = kn0 + kn1z
−1 + ⋯ + knnz

−nn (3)

Fig. 1  ILC structure in closed-loop
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Kd(z, ρ) = 1 + kd1z
−1 + ⋯ + kdnz

−dn (4)

where kni and kdi are the controller parameters and {nn, dn} are the
orders of the polynomials Kn and Kd, respectively. The vector of
controller parameters ρ is defined as

ρ⊤ = [kn0, kn1, …, knn, kd1, kd2, …, kdn] (5)

where ρ ∈ ℝn with n = nn + dn + 1.
To attain ℋ∞ performance for a particular sensitivity function,

one can consider minimising ∥ WvSv(ρ) ∥∞ for v ∈ {1, 2, 3, 4}
where Wv is a proper and stable weight with bounded infinity
norm, and Sv(ρ) is a sensitivity function of interest. For this paper,
S1(ρ) will represent the sensitivity function from reference input r
to the output y (i.e. S1(ρ) = GK(ρ)[1 + GK(ρ)]−1), while S2(ρ) will
represent the sensitivity function from the output disturbance d to y
(i.e. S2(ρ) = [1 + GK(ρ)]−1).

Suppose that it is desired to minimise the nominal performance
condition ∥ W2S2(ρ) ∥∞ (with S2(ρ) = MKd(ρ)ψ−1(ρ) where
ψ(ρ) = NKn(ρ) + MKd(ρ)) in order to attain sufficient robustness
or adequate disturbance rejection. Minimising the nominal
performance condition is equivalent to minimising Γ ∈ ℝ+ with the
constraint ∥ W2S2(ρ) ∥∞ < Γ (which is an epigraph representation
of the optimisation criterion). In [14], it is shown that satisfying the
nominal performance condition is equivalent to

Γ−1 W2(e jω)M(e jω)Kd(e jω, ρ) < ℜ{ψ(e jω, ρ)}, ∀ω ∈ Ω (6)

By minimising Γ with the above constraint, a quasi-convex
optimisation problem can be formulated (where the optimum is
obtained by implementing a bisection algorithm). The authors in
[14] also show that as the controller order increases, the solution to
the convex problem converges to the global optimal solution of the
ℋ∞ problem.

2.2 ILC formulation

The ILC structure that is considered in this paper is shown in Fig.
1, which is a modified version of the serial ILC architecture (where
the reference input of the closed-loop system is modified instead of
the plant control signal). For SISO linear time-invariant systems,
the output of the closed-loop control system can be expressed as
follows:

yl(k) = S1(q)rl(k) + S2(q)d(k) (7)

where l is the ILC iteration sequence, yl(k) is the output, yd(k) is the
desired output, and rl(k) is the reference signal that is modified by
the ILC algorithm in order to acquire the desired output response.
The transfer operators S1(q) and S2(q) are assumed to be stable.

Let us denote the error of the ILC closed-loop system as
el(k) ≜ yd(k) − yl(k); the first-order ILC algorithm can then be
expressed as

rl + 1(k) = Q(q)[rl(k) + L(q)el(k)], (8)

where Q(q) and L(q) are known as the Q-filter and learning filter,
respectively. By combining the z-transforms of (7) and (8), one can
arrive to the following condition:

Rl + 1(z) = Q (z)[1 − L(z)S1(z)]Rl(z)
+Q(z)L(z)[Yd(z) − S2(z)D(z)] (9)

Given this transformed result, a sufficient condition for stability
can be obtained by invoking that Q(z)[1 − L(z)S1(z)] be a
contraction mapping. The following theorem is recalled for
ensuring the stability of the ILC algorithm [29, 30].

 
Theorem 1: If

∥ Q(z)[1 − L(z)S1(z)] ∥∞ < 1, (10)

then the system in (7) using the update equation in (8) is
asymptotically stable.

The result in Theorem 1 can be used to express the stability
condition in the frequency domain, as follows:

sup
ω ∈ Ω

Q(e jω)[1 − L(e jω)S1(e jω)] < γ (11)

where γ = 1. S1(e jω) can be easily obtained by spectral analysis of
measured data. Suppose that S1(e jω) is obtained using the Fourier
transform of the reference input signal r(k) and output signal y(k);
then S1(e jω) = Y(e jω)R−1(e jω), where

R(e jω) = ∑
k = 0

ks

r(k)e− jωk , Y(e jω) = ∑
k = 0

ks

y(k)e− jωk (12)

and ks is the number of data. Satisfying the stability condition also
implies monotonic convergence of the error, which is recalled in
the following lemma [21, 29]:

 
Lemma 1: If the ILC system and the update equation in (8) with

iteration trials of infinite time duration satisfies

λ ≜ ∥ Q(z)[1 − L(z)S1(z)] ∥∞ < 1 (13)

then

∥ E∞(z) − El + 1(z) ∥∞ < λ ∥ E∞(z) − El(z) ∥∞ (14)

for all l ∈ {1, 2, …}.
As stated in [31], when Q and L are causal functions, then

satisfying (13) also implies ∥ e∞ − el + 1 ∥2 < λ ∥ e∞ − el ∥2 for all
l ∈ {1, 2, …} for the ILC system with a finite duration. Note that
the convergence condition in (13) is equivalent to the stability
condition in (11); thus satisfying the stability condition (11)
ensures both stability and monotonic convergence (which is
independent of the iteration duration).

In a model-based setting, the learning filter can be selected as
L(z) = S1

−1(z) (assuming that S1(z) is minimum phase); this will
ensure that the ILC algorithm converges after one iteration.
According to [32], there exists a bounded non-causal signal that
produces the desired output for non-minimum phase systems.
Therefore, this implies that there exists a non-causal learning filter
that can invert the dynamics of a non-minimum phase system. The
non-causality of L(z) is not a problem since the ILC algorithm is
run offline and because the ILC structure uses information from
previous iteration signals, which are stored in memory. However,
when S1(z) is non-minimum phase, this inversion is not possible as
the learning filter then becomes unstable; in this case, there are
methods in the literature that implement stable inversion
approaches to build the learning function (see [33–35]). A stable
inversion is necessary due to the fact that unstable filters can
produce control actions that grow exponentially over time where,
even over a finite duration, can become undesirably large (which
can excite certain non-linearities and even damage system
components [36]). In either case, a model is required to build a
learning function that best approximates the inverse of the plant
dynamics. Due to the unmodelled dynamics inherent in system
models, a Q-filter can then be used to ensure robustness to
uncertainties; the introduction of a filter Q(z) ≠ 1 (or a Q-filter
with a sufficiently low bandwidth), however, will cause
performance degradations for systems requiring very high
performance.

3 Convex parameterisation of learning filters
In this section, the stability condition in (11) will be used to
formulate some convex constraints with respect to the parameters
of the learning filter while simultaneously optimising the
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convergence criterion for optimal ILC performance. For notation
purposes, the dependency in ω will be neglected, and will only be
reiterated when deemed necessary.

In a data-driven setting, the uncertainty from the modelling
process is removed and replaced with measurement uncertainty,
which, to some extent, can be made smaller and smaller by means
of more accurate instruments (and smaller than the modelling
uncertainty). The selection of a Q-filter can therefore be made
without much conservatism. Given the results of the convergence
criterion in Lemma 1, it is logical to consider minimising λ instead
of simply satisfying the inequality (since a smaller λ would ensure
a faster convergence rate). Minimising λ is equivalent to
minimising γ such that ∥ Q[1 − LS1] ∥∞ < γ (which is an epigraph
representation of the optimisation problem). Thus an optimisation
problem can be formulated to design a learning filter L (given a
desired Q) such that ∥ Q[1 − LS1] ∥∞ is minimised. By the
condition in (11), it must also be ensured that
∥ Q[1 − LS1] ∥∞ < 1.

Consider the filter L parameterised as

L(α, z) = Ln(α, z)Ld
−1(α, z)

where Ln(α, z) is stable and possibly non-causal and
Ld(α, z) ∈ RH∞. The functions Ln(α, z) and Ld(α, z) are linearly
parameterised as Ln(α, z) = αn

⊤ϕn(z) and Ld(α, z) = αd
⊤ϕd(z), where

αn
⊤ = [αn0, …, αnβn

] and αd
⊤ = [αd0, …, αdβd

] are the vectors of the
filter parameters and ϕn(z), ϕd(z) are vectors of stable orthogonal
basis functions given as follows:

ϕn
⊤(z) = 1

(z − ξ)βd
[1 z z2…zβn]

ϕd
⊤(z) = 1

(z − ξ)βd
[1 z z2…zβd]

(15)

with −1 < ξ < 1 and βd ≤ βn. Note that when βn = βd, L(α, z) is
proper and causal. With this formulation, the constraint in (11) can
then be expressed as follows:

xr(γ, α) < Ld(α) , ∀ω ∈ Ω (16)

where xr(γ, α) ≜ γ−1 Q[Ld(α) − Ln(α)S1] . The condition in (16) can
be graphically interpreted as a disk in the complex plane (centred at
Ld(α) with a radius of xr(γ, α)) that does not include the origin for
any frequency point in Ω. Fig. 2 displays a graphical interpretation
of this condition for a given ω. This geometrical construction will
be used to prove the following lemma:
 

Lemma 2: Suppose that L(α) = Ln(α)Ld
−1(α) is the frequency

response of a bounded analytic function outside the unit circle.
Then (11) is met if and only if there exists a stable proper rational
transfer function F(z) that satisfies

ℜ Ld(α)F(e jω) > xr(γ, α) F(e jω) , ∀ω ∈ Ω . (17)
 

Proof: The proof of this lemma follows from the proofs
presented in [37]. From Fig. 2, it is clear that (11) is satisfied if and
only if the disk of radius xr(γ, α) centred at Ld(α) does not include
the origin for all ω ∈ Ω (as stated in (16)). This is equivalent to the
existence of a line passing through origin that does not intersect the
disk. Therefore, at every given frequency, ω, there exists a complex
number f (e jω) that can rotate the disk such that it lays inside the
right hand side of the imaginary axis. Hence, we have

ℜ Ld(α) − xr(γ, α)e jθ f (e jω) > 0,
∀ω ∈ Ω, ∀θ ∈ [0 , 2π[ .

(18)

Since f (e jω) = f (e jω) e jθ f , then the above condition can be
expressed as

ℜ Ld(α) f (e jω) > xr(γ, α) f (e jω) cos(θ + θ f )
∀ω ∈ Ω, ∀θ ∈ [0 , 2π[ .

(19)

However, (19) is satisfied if and only if

ℜ Ld(α) f (e jω) > xr(γ, α) f (e jω) , ∀ω ∈ Ω . (20)

In [37], it is shown that f (e jω) can be approximated arbitrarily well
by the frequency response of a stable transfer function F(z) if and
only if

Z = Ld(α) − xr(γ+, α)e jθ −1 (21)

is analytic outside the unit circle for all θ ∈ [0 , 2π[ and for all
γ+ > γ. However, Ld

−1(α) is stable because of the stability of L.
Additionally, by decreasing γ+ from infinity to γ, the poles of Z
move continuously with γ+. Therefore, Z is not analytic outside the
unit circle if and only if Z−1(e jω) = 0 for a given frequency, which
is not the case because the disk shown in Fig. 2 does not include
the origin. □

The set of all learning filters that meet the ILC stability
condition is asserted in the following theorem.

 
Theorem 2: Given the frequency response function of a stable

system S1 and a filter Q, then the following statements are
equivalent:

(a) There exists a stable filter L(α) where

sup
ω ∈ Ω

Q[1 − L(α)S1] < γ (22)

(b) There exist Ln(α) and Ld(α) ∈ RH∞ with L(α) = Ln(α)Ld
−1(α)

such that

ℜ{Ld(α)} > xr(γ, α), ∀ω ∈ Ω . (23)

 
Proof: (b ⇒ a) ℜ{Ld(α)} > 0 signifies that the Nyquist plot of

Ld(α) will not encircle the origin ∀ω. However, note that

ℜ{Ld(α)} > 0 ⟺ ℜ 1
Ld(α) > 0.

By the positive real Lemma [38], Ld
−1(α) is strictly positive real if

and only if

• No poles of Ld
−1(α) lie in z > 1.

• ℜ{Ld
−1(α)} > 0, ∀ω ∈ Ω.

• The poles of Ld
−1(α) on the unit circle are simple.

Fig. 2  Graphical interpretation of the constraint (16) in the complex plane
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Therefore, the positive real constraint implies that Ld
−1(α) is

Hurwitz (and thus L(α) is stable). On the other hand, note that
Ld(α) ≥ ℜ{Ld(α)} for all ω ∈ Ω. From the condition in Statement
(b), this implies that xr(γ, α) < Ld(α) , ∀ω ∈ Ω, which leads to

Q[Ld(α) − Ln(α)S1] < γ Ld(α) , ∀ω ∈ Ω, (24)

and consequently to (22) in Statement (a).
(a ⇒ b) Assume that L(α0) = Ln(α0)Ld

−1(α0) satisfies Statement
(a) but not Statement (b). Then, according to Lemma 2, there exists
a stable proper rational transfer function F(z) such that

ℜ Ld(α0)F(e jω) > xr(γ, α0) F(e jω) , ∀ω ∈ Ω . (25)

Therefore, there exists a higher order filter with Ln(α) = Ln(α0)F
and Ld(α) = Ld(α0)F with

L(α) = Ln(α)Ld
−1(α) = Ln(α0)Ld

−1(α0)

such that Statement (b) holds. □
The necessary and sufficient condition in Theorem 2 can be

used to ensure the stability and performance of the ILC algorithm
(while guaranteeing the stability of the learning filter). The results
of this theorem can also be used to ensure other performance
constraints (such as controller output constraints in order to avoid
saturation). To develop this constraint, the condition relating the
converged plant input signal as a function of the desired reference
signal is needed; from Fig. 1 and (8), it can be shown that

u∞(k) = QL(α)S3

1 − Q(1 − L(α)S1) yd(k), (26)

where S3 = KS2 and u is the input to the plant G. Given an input
weight function W3, a constraint to limit the controller output can
be expressed as

W3
QL(α)S3

1 − Q(1 − L(α)S1) < 1, ∀ω ∈ Ω . (27)

 
Corollary 1: Suppose that the stability and performance

condition satisfies ∥ Q(1 − L(α)S1) ∥∞ ≤ γ (with γ ∈ [0, 1)). Then
the learning filter L(α) = Ln(α)Ld

−1(α) is stable and the input
constraint in (27) is satisfied if

ℜ{Ld(α)} > xu(γ, α), ∀ω ∈ Ω, (28)

where xu(γ, α) = (1 − γ)−1 W3QLn(α)S3 .
 

Proof: By the results of Theorem 2, ℜ{Ld(α)} > 0, ∀ω ∈ Ω
implies that L(α) is stable. Since Ld(α) ≥ ℜ{Ld(α)} for all
ω ∈ Ω, then (28) leads to xu(γ, α) < Ld(α) , ∀ω ∈ Ω, which is
equivalent to

W3QL(α)S3 < 1 − γ, ∀ω ∈ Ω . (29)

Since Q(1 − L(α)S1) < γ for all ω ∈ Ω, and noting that

1 − Q(1 − L(α)S1) ≤ 1 − Q(1 − L(α)S1) , ∀ω ∈ Ω,

then it is evident that

1 − γ < 1 − Q(1 − L(α)S1) , ∀ω ∈ Ω . (30)

From (29), it can then be deduced from the above inequality that

W3QL(α)S3 < 1 − Q(1 − L(α)S1) , ∀ω ∈ Ω, (31)

which leads directly to the condition in (27). □

3.1 Semi-definite programming

Based on the results of Theorem 2, an optimisation problem for
obtaining the admissible values of α and γ can be formulated as
follows:

minimise
γ, α

γ

subject to: 0 ≤ γ < 1
ℜ Ld(α) > xr(γ, α)
∀ω ∈ Ω

(32)

This problem is quasi-convex [Note that adding constraint (28) in
the optimisation problem (32) does not change the quasi-convexity
of the problem since (1 − γ) is non-negative.] and is known as a
semi-infinite programming problem (since there are a finite
number of optimisation variables and an infinite amount of
constraints with respect to ω). The problem can be converted to a
semi-definite programming problem by predefining a frequency
grid Ωη = {ω1, ω2, …, ωη} a-priori and solving the problem with a
finite amount of constraints (which can be solved efficiently with
solvers that are readily available). The frequency points may be
equally spaced, logarithmically spaced or chosen based on some
information about the frequency response of S1 (where more
frequency points can be used around the resonance frequencies and
closed-loop bandwidth). The optimal choice of the frequency
points is an open problem. However, the complexity of the
optimisation algorithm grows linearly with the number of
frequency points, and so it can be chosen large enough. Another
approach in selecting this grid is to use a randomised method
where the frequency grid is selected such that the constraints are
satisfied within a given probability level (see [39, 40]). The
solution to this quasi-convex problem can be obtained by
implementing a bisection algorithm where convergence to the
global optimum is obtained within a given tolerance level. The
maximum value of the bisection variable γmax = 1 − ϵ (with ϵ being
an arbitrarily small positive constant) will ensure that any feasible
solution to the problem will produce a realisable learning filter.

Note that the basis functions for the learning filter stated in (15)
have only one parameter to be selected (ξ). For low-order filters,
this choice may have a significant effect on the ILC performance.
However, for high-order filters, the choice of the basis function is
not important. For a given ILC sequence with a finite amount of
samples, the lowest value of the optimal solution γ⋆ for that
problem is obtained when βn is selected to be equal to the number
of samples in an ILC iteration (for any arbitrarily low value of βd).
However, very high order filters may cause computational
problems (in both the implementation of the filter and in solving
the optimisation problem). Thus the following steps can be
performed for designing a low-order learning filter that will
produce a feasible solution to the optimisation problem:

• Experimentally obtain the FRF of S1 by means of spectral
analysis.
• Select and fix an arbitrarily low value for βd and select any
ξ ∈ ( − 1, 1).
• Choose a value for βn such that βn > βd and solve the problem in
(32). One can start with βn = βd + 1.
• If the problem is feasible, stop. Otherwise, increase the value of
βn and return to the previous step.

If a faster ILC convergence rate is desired (i.e. a desired lower
value of γ⋆), then βd and βn can always be increased until the
desired performance is met.

 
Remark 1: In order to mitigate the phase shift of the Q-filter, the

adjoint filter Q∗ is considered such that Q∗Q = Q 2 is implemented.
This filtering will cause the condition in (11) to change as follows:
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sup
ω ∈ Ω

Q(e jω)
2

1 − L(e jω)S1(e jω) < γ .

Consequently, the constraints in (28) and (32) will need to consider
Q 2 instead of Q . The MATLAB filtfilt function can then be
used to implement the Q-filter in the learning algorithm and
eliminate the phase shift.

 
Remark 2: The update equation in (8) can be extended to

include information from previous iterations, i.e.

rl + 1(k) = ∑
i = 1

no

Qi(q) rl − i + 1(k) + Li(q)el − i + 1(k) . (33)

The reference signal for the next trial is calculated from the
reference signals and the errors in the no previous iterations. This
represents an noth order ILC algorithm. In this case, the proposed
method can still be used to design learning filters for the no
previous iterations; the optimisation problem for this case can be
formulated as follows:

minimise
γ, α

γ

subject to: ℜ Ld, i(α) > xr, i(γ, α)
i = 1, …, no; ∀ω ∈ Ω

(34)

where xr, i(γ, α) = γ−1 Qi[Ld, i(α) − Ln, i(α)S1]  with
Li(α) = Ln, i(α)Ld, i

−1(α).

4 Simulation example
Consider the following non-minimum phase open-loop system
sampled at Ts = 10−3 s with multi-model uncertainty

G(z) = (z − 2.3)(z + δ)
z3 − 0.2z2 + 0.7z + 0.3 (35)

where δ is an uncertain parameter that belongs in the set
δ ∈ {0.8δn, δn, 1.2δn} (i.e. the nominal value δn = 1.15 can vary by
±20%).
 

Remark 3: It is imperative to note that these models are simply
used to obtain the frequency response functions of the perturbed
plants. The actual controller synthesis does not rely on these
parametric models.

The proposed controller design method can be used to
guarantee the performance and stability for all of the models in this
uncertain set. The plant Gi for i = 1, 2, 3 will be used to denote the
plant model associated with the uncertain parameter δi in the set δ.
Consequently, the sensitivity function Sv

i  for i = 1, 2, 3 will be used
in the same manner.

First, a controller K was designed by minimising ∥ W2S2
i(ρ) ∥∞

in order to stabilise the closed-loop system; the convex
approximation in (6) was used for this purpose with a controller
order nn = dn = 4. The desired closed-loop response was selected
as a simple first-order system S1

d = (τds + 1)−1 (with
τd = (200π)−1 s); thus the filter W2 = (1 − S1

d)−1 was selected to
solve the optimisation problem (with Ni(e jω) = Gi(e jω) and
Mi(e jω) = 1).

According to [41], a scenario approach can be used to select the
frequency grid in the optimisation problem where the number of
(random) frequency points selected must satisfy the following
condition:

η ≥ 1
ϵ ln 1

σ + n − 1 + 2(n − 1)ln 1
σ (36)

where the violation and confidence parameters are denoted as ϵ and
σ, respectively. For a 4th-order controller with violation and
confidence parameters set to 0.05, η ≥ 359; thus 400 points were
randomly selected from a frequency grid in the interval
[10−2, π /Ts] rad s−1. Minimising Γ with the constraint in (6) with
this selected grid (while considering all of the models Gi) produces
an optimal solution Γ⋆ = 2.438 (where a bisection algorithm was
used to solve the convex problem with Γmax = 10, Γmin = 0, and a
tolerance of 10−4).

With the closed-loop system now stabilised for all models in the
uncertain set, the proposed ILC scheme was then used to attain the
desired tracking performance. A smoothed delayed step response
was selected as the desired output signal, i.e.

yd(k) = 0.5[1 + tanh(2π f dkTs − 2π)],

where f d = 50. It was desired to compare the proposed method
with the optimisation method developed in [25]. In [25], the Q-
filter and learning filter are each linearly parameterised with non-
causal functions; to convexify the performance condition (11), the
authors defined a new linearly parameterised function L^ = QL.
After solving the optimisation problem, the learning function L was
then obtained as L^ /Q. This substitution, however, does not
guarantee the stability of the learning filter L and can cause
implementation problems.

 
Remark 4: Note that in [25], it was not clear how to shape the

Q-filter with the performance filter Wp. One could include an
additional constraint such as ∥ Q − Qd ∥ < γ (which is convex,
where Qd is the desired FRF of the Q-filter) to shape Q; however, a
very large order Q-filter was needed to ensure that Q matches well
with Qd (particularly with the uncertain multi-model problem
considered in this example). Thus to have a fair comparison with
the method presented in this paper, the Q-filter was fixed in the
proposed method and in [25] while optimising for the linearly
parameterised learning filter L.

The first design case will consider minimising the performance
condition given a low-pass Q-filter with a bandwidth of 300 Hz
(i.e. selecting Q(z) = (1 − a)(z − a)−1 with a = e−Ts/τ and
τ = (600π)−1 s). For a fair comparison, the orders of the learning
filters with βn = 4 were selected to be equal (with the proposed
method using βd = 1 and ξ = 0). The proposed optimisation
algorithm (32) and the method in [25] were used to ensure the
stability and performance for all the models S1

i (using the same
frequency grid selected for the feedback controller design). Fig. 3
displays the 2-norm of the error for each uncertain model as a
function of the iteration sequence (with the associated optimal
value of the cost function γ). It can be observed that the proposed
method achieves both a faster convergence rate and a lower error.
The reason for this is due to the fact that the proposed approach can
simultaneously optimise for the numerator and denominator
parameters of the learning filter (which leads to a better
approximation of the plant inverse), whereas the method in [25]

Fig. 3  Normed error considering the plant with uncertainty δ1 (solid), δ2

(dashed), and δ3 (dot) with the proposed method (blue) and the method in
[25] (red)
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can only consider linearly parameterised filters (and thus limits the
achieved performance for a given filter order). Fig. 4 shows the
FRF's of the performance criterion Q(1 − LS1

i)  for i = 1, 2, 3
(which confirms the faster convergence rate of the proposed
approach). 

4.1 Plant input constraint

The second design case will consider adding a plant input
constraint to the multi-model performance problem. The same low-
pass Q-filter used from the previous design (with a bandwidth of
300 Hz) was also used for this design. The input constraint filter W3
was selected to constrain the input signal at high frequencies
( f > 70 Hz). The magnitude plots of these filters are shown in Fig.
5. 

The proposed optimisation problem in (32) was solved with the
additional input constraint in (28); again, for a fair comparison, the
learning filter with βn = 4 was selected to be equal using the
proposed approach and the approach in [25] (with the proposed
method using βd = 1 and ξ = 0). The resulting normed errors for
each model S1

i are shown in Fig. 6. Again, compared with the
method in [25], the proposed method achieves both a faster
convergence rate and a lower error. However, due to the added
input constraint, the convergence rate is lower and the error is
slightly larger than the case where the input constraint was
neglected.

5 Case study
The framework of the system discussed in this case study is part of
the CERN Large Hadron Collider (LHC) Injector Upgrade Project
[42], which is implemented to mitigate space-charge effects and to
increase the beam brightness in order to fulfil the needs of the High
Luminosity LHC [43]. The Q-STRIPs are circuits powering
additional windings of the focusing/defocusing quadrupole
magnets of the Proton Synchrotron Booster accelerator. Beam
dynamics is a very vast and complicated subject as the motion of
relativistic and non-relativistic particles in electromagnetic fields is
complex and non-linear. The function of magnets in a particle
accelerator can be thought as being equivalent to optical functions:
a dipole magnet will bend the beam, whereas a quadrupole magnet
will focus the beam (in one plane, while defocusing it in the
transverse plane). Higher order optical corrections are
implemented by means of higher order n-pole magnets: sextupoles,
octupoles etc. [44]. The higher the energy of the beam, the greater
the integrated magnetic field (or its spatial first, second and higher
order gradients) needs to be. The Q-STRIP circuits are used to
adjust each ring of the PS booster in terms of gradient strength. The
quality of the optics is determined by the quality of the magnets
and by the precision of the current supplying them. In fact, the
magnetic field is controlled by applying controlled currents in the
magnets (which are measured with high precision devices); the
power converter control system is used for this purpose. Its
performance is therefore of the utmost importance for the trajectory
control of particle beams in any accelerator.

Power converters can be seen as systems comprised of three
main subsystems: (i) a power source (usually a voltage source) (ii)
a measuring system and (iii) a controller unit. The current is
usually measured with a particularly accurate current transducer
called a direct current-current transformer (DCCT) [45]. The
current measurement signal is fed back to a digital controller unit
that implements the digital control algorithm and that usually
includes a high-precision analogue-to-digital converter (ADC)
[46].

5.1 CANCUN for Q-STRIP

The general configuration of the CERN power converter control
system is depicted in Fig. 7. The control loop consists of a magnet
(i.e. the load), a voltage source Vs, low-pass anti-aliasing analogue
and digital filters (ALPF, DLPF), a digital-to-analogue converter
(DAC), and an ADC. The DAC (which is optional as the voltage
source could have a direct digital input) and ADCs are integrated in

the control unit labelled as the function generator controller (FGC,
[47]) whose main function is to execute the control algorithm; it
also implements all the diagnostics and communication functions
with higher layers of the control architecture up to the accelerators
control rooms. The DLPF may also include a decimator to reduce
the sampling rate of the signal. The COMM block represents the
delay associated with the communications link.

The controller implemented within the FGC is a two-degree-of-
freedom controller known as the RST controller (see [15, 48]). In
the RST structure, the polynomials R,S and T are each formulated
as FIR filters (where under certain conditions, the tracking and
regulation requirements can be set independently from each other).
To transform the structure into the one-degree-of-freedom
representation shown in Fig. 7, the polynomials R and T are set to
be equal to each other; in this manner, Kn in (3) would be
equivalent to R and Kd in (4) would be equivalent to S.

The experimental test setup consists of a CERN AC–DC
Narrow Converter (CANCUN), a dummy load and a proprietary
software diagnostics tool:

The CANCUN power converter, depicted in Fig. 8, is
comprised of three main parts:

• a voltage source based on a full-bridge phase shifted topology
followed by a four quadrant switching stage to allow four quadrant
operation;
• two high precision current sensors (DCCTs, two are used for
redundancy purposes) which are able to measure DC or pulsed
current at the required precision;
• a digital controller (FGC3) which implements the digital control
loop together with CERN designed control and diagnostics
electronics.

The ratings of the CANCUN for the Q-STRIP application is
±100 A and ±30 V. The dummy load is (ideally) an RL-series load
whose characteristics match those of the Q-STRIP windings. The
software diagnostics tool interfaces with the main digital controller
module, the FGC3 [47], and is able to acquire the relevant signals
up to a sampling rate of 10 × 103 samples per second. The acquired
signals are:

• the reference current and voltage;
• the measured current and voltage;
• the current error: difference between measured current signal and
the (optionally delayed) reference current signal.

5.2 Controller design

For this application, there are two requirements to be satisfied: (i)
obtain a modulus margin md ∈ ℝ+ of at least 0.5 to guarantee
robustness; (ii) guarantee that the current error, in parts-per-million
(ppm), always remains within the bounds defined in Fig. 9 for the
specific reference current shown. The ppm units always refer to the
rating of the current for the power converter, which is 100 A in this
case. Requirement (i) is achieved by means of the data-driven ℋ∞
method discussed in Section 2 (i.e. design a controller to stabilise
the closed-loop system), while requirement (ii) is accomplished by
implementing the proposed ILC methodology in the closed-loop
form.

[All optimisation problems in this case study were solved using
a computer having the following hardware specifications: Intel-
Core i7, 3.4 GHz CPU, 8 GB RAM. The optimisation algorithms
were run using MATLAB version (R2017a) on a Windows 7 platform
(64-bit) in conjunction with the YALMIP interface [49].]

5.2.1 Synthesis for closed-loop stability: An open-loop
experiment was performed to obtain the FRF of the open-loop
system in order to design a stabilising controller K. For this
purpose, a pseudo-random-binary-sequence (PRBS) signal was
used as the input voltage reference in order to capture its dynamics.
The PRBS clock period was set to Tcl = 100 μs. A 14-bit PRBS
signal (which corresponds to a period with a length of 16,383
samples) was used; with a signal of length 16,383, the frequency
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resolution is limited to 8192 points. Fig. 10 (top, in blue) shows a
portion of the input and output signals acquired from the open-loop
identification experiment. The FRF of the process was then
obtained as G(e jω) = ℱ{i(t)}/ℱ{v(t)} (where ℱ{ ⋅ } denotes the
Fourier transform of the argument); Fig. 11 shows the gain and
phase Bode plots of G(e jω). 

The closed-loop regulation sampling time was set to
Ts = 500 μs (i.e. 5 times longer than the clock period used for the
PRBS); for this reason, the frequency points above 1 kHz in G(e jω)
were not needed for synthesis. The following optimisation problem
was considered for attaining the desired specifications:

minimise
ρ, Γ

Γ

subject to: ∥ W2S2(ρ) ∥∞ < Γ
∥ mdS2(ρ) ∥∞ < 1
ℜ Kd(ρ) > 0

(37)

with md = 0.5. The last constraint in this problem ensures that the
controller K itself is also stable (which is a requirement set within
the proprietary software of the CERN controller [15, 45, 50]). The
filter W2 was selected as [1 − S1

d(s)]−1 with
S1

d(s) = ωd
2(s2 + 2ζωds + ωd

2)−1 in order to have a closed-loop
behaviour of a second-order system. The desired bandwidth f d was
set to 250 Hz and the desired damping ratio ζ to 0.8, where

ωd = 2π f d 1 − 2ζ2 + 2 − 4ζ2 + 4ζ4 −0.5 .

The optimisation problem as stated in (37) is not convex and the
solution does not guarantee the closed-loop stability. Thus the
convex method described in Section 2 was used to convexify the
problem in (37) whilst guaranteeing the closed-loop stability,
which was then solved in the SDP form over a randomly chosen
frequency grid. A 5th-order controller containing integral action
was designed. For a 5th-order controller (i.e. nn = dn = 5) with
violation and confidence parameters set to 0.05, η ≥ 415 (from
(36)); thus 500 points were randomly selected from the grid
produced for the PRBS experiment. The bisection algorithm was
used to solve the convex problem with Γmax = 2.5, Γmin = 0, and a
tolerance of 10−4; with these parameters, the optimisation time was
78.6 s and the optimal solution obtained was Γ⋆ = 1.138. Another
PRBS experiment was performed (with a different 14-bit PRBS
sequence depicted, in red, in Fig. 10) to measure the closed-loop
FRF whose Bode diagrams are shown in Fig. 11 (red curves). It can
be observed that the desired closed-loop bandwidth has been
achieved (while also guaranteeing the desired modulus margin for
robustness).

5.2.2 Synthesis for tracking using ILC: With the desired
robustness specifications satisfied for the closed-loop system, the
proposed ILC methodology was then used for attaining the desired
tracking performance. A Q-filter Q = 1 was selected in order to
obtain the best possible tracking performance. A non-causl learning
filter L was selected with βd = 2 and βn = 8 (where ξ was set to 0
for simplicity). From the available frequency points obtained from
the PRBS (closed-loop) identification experiment, 500 points were
again randomly selected from this grid using the methods described
in [41] (with violation and confidence parameters both set to 0.05,
as before). The optimisation problem in (32) was then solved in the
SDP form; the bisection algorithm was used to solve the convex
problem with γmax = 1, γmin = 0, and a tolerance of 10−4; with these
parameters, the optimisation time was 49.6 s and the optimal
solution obtained was γ⋆ = 0.652.

Fig. 12 shows the dynamics of the learning filter when the
problem in (32) was solved for various orders of βn (for a fixed βd). 
It can be observed that as the order of the learning filter increases,
the dynamics of the filter converges to the dynamics of the inverse
of the closed-loop process; thus error convergence can be obtained
with less ILC iterations by increasing the order of the learning
filter.

5.2.3 Experimental results with ILC: With the learning filter L
obtained from the optimisation problem, the update equation in (8)
was then used (in an offline manner) to generate the closed-loop
reference signal that would minimise the error (given the desired
reference signal shown in Fig. 9). The process was iterated eight
times; Fig. 13 shows the resulting output and error (in ppm) after
the 8th iteration. It can be observed that the error is well within the
desired bounds and that the main source of error seems to arise
from the system noise. In [48], the same case study was
considered, but presenting a different data-driven control

Fig. 4  Performance condition Q(1 − LS1)  considering the plant with
uncertainty δ1 (solid), δ2 (dashed), and δ3 (dot) with the proposed method
(blue) and the method in [25] (red)

 

Fig. 5  Magnitude of the weights Q (blue) and W3 (red) used for the input
constrained problem

 

Fig. 6  Normed error for the input constrained problem considering the
plant with uncertainty δ1 (solid), δ2 (dashed), and δ3 (dot) with the proposed
method (blue) and the method in [25] (red)

 

Fig. 7  Power converter control system
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methodology. In [48], a two-degree-of-freedom controller running
with a 10 kS/s sampling rate was proposed and proven to also
achieve the required precision. However, the magnitude of the peak
error was approximately 500 ppm whereas the peak error shown in
Fig. 9 is much smaller. Furthermore, the error in [48] was
correlated to the dynamics of the reference signal (being larger
during its fastest transitions) whereas with the proposed ILC
controller, the error dynamics seems completely uncorrelated to the

dynamics of the reference where the error is dominated by the
overall system noise. It must be also noted that the tracking error
has been significantly reduced (while still maintaining sufficient
robustness margins for closed-loop stability) by using a controller
sampling rate five times smaller than what was reported in [48],
which is an important advantage in terms of computational
resources required.

6 Conclusion
A new data-driven method for computing ILC learning filters has
been presented. A frequency-domain approach has been used in
order to avoid the problem of unmodelled dynamics associated
with parametric models. In the proposed approach, a convex
optimisation problem has been formulated in order to minimise the
ℋ∞ norm the of ILC stability and convergence criterion. The
solution to this problem ensures the stability of the learning filter
whilst providing the fastest convergence rate (for a given order of
the filter). The proposed method has been applied to a case study at
CERN, where it was shown that the data-driven ILC methodology
eliminates the need of a system model and can achieve the desired
tracking specifications with much less conservatism. Furthermore,
it has also been shown that better performance (with respect to the
tracking error) can be achieved with a substantially slower
controller, which is a non-secondary asset of the proposed
methodology. For future research, it will be desired to characterise
the uncertainty of the FRF measurement and optimise the ILC
convergence rate while explicitly taking it into account.
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